Extensions 1→N→G→Q→1 with N=C42 and Q=C22

Direct product G=NxQ with N=C42 and Q=C22
dρLabelID
C22xC42168C2^2xC42168,57

Semidirect products G=N:Q with N=C42 and Q=C22
extensionφ:Q→Aut NdρLabelID
C42:C22 = C2xS3xD7φ: C22/C1C22 ⊆ Aut C42424+C42:C2^2168,50
C42:2C22 = C22xD21φ: C22/C2C2 ⊆ Aut C4284C42:2C2^2168,56
C42:3C22 = C2xC6xD7φ: C22/C2C2 ⊆ Aut C4284C42:3C2^2168,54
C42:4C22 = S3xC2xC14φ: C22/C2C2 ⊆ Aut C4284C42:4C2^2168,55

Non-split extensions G=N.Q with N=C42 and Q=C22
extensionφ:Q→Aut NdρLabelID
C42.1C22 = Dic3xD7φ: C22/C1C22 ⊆ Aut C42844-C42.1C2^2168,12
C42.2C22 = S3xDic7φ: C22/C1C22 ⊆ Aut C42844-C42.2C2^2168,13
C42.3C22 = D21:C4φ: C22/C1C22 ⊆ Aut C42844+C42.3C2^2168,14
C42.4C22 = C21:D4φ: C22/C1C22 ⊆ Aut C42844-C42.4C2^2168,15
C42.5C22 = C3:D28φ: C22/C1C22 ⊆ Aut C42844+C42.5C2^2168,16
C42.6C22 = C7:D12φ: C22/C1C22 ⊆ Aut C42844+C42.6C2^2168,17
C42.7C22 = C21:Q8φ: C22/C1C22 ⊆ Aut C421684-C42.7C2^2168,18
C42.8C22 = Dic42φ: C22/C2C2 ⊆ Aut C421682-C42.8C2^2168,34
C42.9C22 = C4xD21φ: C22/C2C2 ⊆ Aut C42842C42.9C2^2168,35
C42.10C22 = D84φ: C22/C2C2 ⊆ Aut C42842+C42.10C2^2168,36
C42.11C22 = C2xDic21φ: C22/C2C2 ⊆ Aut C42168C42.11C2^2168,37
C42.12C22 = C21:7D4φ: C22/C2C2 ⊆ Aut C42842C42.12C2^2168,38
C42.13C22 = C3xDic14φ: C22/C2C2 ⊆ Aut C421682C42.13C2^2168,24
C42.14C22 = C12xD7φ: C22/C2C2 ⊆ Aut C42842C42.14C2^2168,25
C42.15C22 = C3xD28φ: C22/C2C2 ⊆ Aut C42842C42.15C2^2168,26
C42.16C22 = C6xDic7φ: C22/C2C2 ⊆ Aut C42168C42.16C2^2168,27
C42.17C22 = C3xC7:D4φ: C22/C2C2 ⊆ Aut C42842C42.17C2^2168,28
C42.18C22 = C7xDic6φ: C22/C2C2 ⊆ Aut C421682C42.18C2^2168,29
C42.19C22 = S3xC28φ: C22/C2C2 ⊆ Aut C42842C42.19C2^2168,30
C42.20C22 = C7xD12φ: C22/C2C2 ⊆ Aut C42842C42.20C2^2168,31
C42.21C22 = Dic3xC14φ: C22/C2C2 ⊆ Aut C42168C42.21C2^2168,32
C42.22C22 = C7xC3:D4φ: C22/C2C2 ⊆ Aut C42842C42.22C2^2168,33
C42.23C22 = D4xC21central extension (φ=1)842C42.23C2^2168,40
C42.24C22 = Q8xC21central extension (φ=1)1682C42.24C2^2168,41

׿
x
:
Z
F
o
wr
Q
<